Templates Fugit


Ever since I started working on Internet Stuff, I’ve been wrestling with crazy Template Languages. This article is an attempt to compare some of the more common template languages out there.

I’ve consolidated this from a series of blog articles I wrote back in 2009. As a result, some of it may be a little disjointed and/or outdated.

Template Languages

Like most of its ilk, TT2 doesn’t want to interpret its template language from within the already interpreted Perl … that’d be silly. Instead, it compiles the template code to Perl, and loads that. Which sounds like a great way to do it. So why, in my little benchmark test (see below), is it > 20x slower than doing a whole bunch of prints? Preliminary benchmark results:

The Benchmark

The very simple benchmark just does a thousand runs of a table with 100 rows of 10 columns each for each of the engines. This is a very very primitive test, but I wanted something which would be very quick to code up. I don’t count the time it takes to compile the templates, since the compiled templates are generally cached anyway

The benchmark source code is available here

The Results

As measured on my machine, with all the usual caveats:

Language Method / Library Elapsed
C printf 0.450
Perl print 0.829
Python print 1.567
Perl Text::Template::Simple 1.678
Python Mako 1.820
Python Jinja 10.775
Perl Template Toolkit 2 25.079
Perl HTML::Template 40.510
Python django 46.758
Python SimpleTAL 64.546
Python genshi 88.289
Perl Petal 91.444

The C/printf version is “cheating”, it doesn’t read from a data structure and is just an attempt to see how long it takes to do the actual I/O. These results don’t match up with the previous ones because they’re on a different machine, and are to /dev/null to eliminate any I/O restrictions as a factor. The setup is otherwise the same as for the previous articles. 91ms might not seem like much, but it all adds up and this is for a very simple benchmark.

‘Petal’ was the real shock … I was expecting that its very abstract nature would make it relatively easy to optimize the output, but instead it takes 75x the time to run than the ‘prints’ version.

But isn’t CPU time cheap?

Well, yeah. It is, compared to programmer time. Which is why we’re doing this stuff in Perl/Python in the first place … but my point is, if you can get a 20x speedup by using a faster template language, so long as it is not particularly much harder to deal with, you might as well. CPU time may be cheap, but systems admin time isn’t, and running 20 servers takes more work that running 1, or more to the point, running 100 servers takes more work than running 4.